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Mathematical Foundations of Flip-Flops

by Vera Pless ‘

Section 1 - Introduction

My interest in this topic was aroused by conversations with
Edward Fredkin and Frank Manning. I found Frank Manning's thesis [ 2]
on this topic a useful reference. The main purpose of this paper is

to lay a mathematical basis for the study of flip-flops. I feel that

i v o e e

this approach will lead, in further studies, to important practica. re-

sults although the alert reader can see some practical applications in

this work.

A J-K flip-flop is a device with 2 inputs (zero or one) and two
outputs, one of which is always the complement of the other. A counter

is a set of n J-K flip-flops whose inputs are either constants (0 or 1)

or outputs of other flip-flops in the counter. 7Jn this paper we only

consider J-K flip-flops whose inputs are outputs of the other flip-flops.

Whenever we refer to an n-counter, w2 shall mean such a counter with no

constant inputs. As in Manning's paper we do not consider flip-flops

whose inputs arise from their own outputs. The specification of the

connections is called the connection list (abbreviated (CL) of the counter.

Consider the following example when n = 3.
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Ji and Ki are the inputs to flip-flop i, and Qi and 6} (the complement

of Qi) are its cutputs., In thi- example Q2 is connected to J1 and Kl,

Q3 is connecteu to J2 and K2, and Q1 1s connected to J3 while Q1 is

cnnnected to K3. For brevity we represent this connection list as

follows:
1 2 3
(2,2) (3,3) (1.1)

The numbers on the first line <erresent the flip-flops i while the

pairs below describe the counters connected to Ji and Ki' Clearly it

is possible to translate a description like this into a diagram as above
or to go from a diagram to such a shortened description. The first of

2 pair of components refers to the J input, the second to the K input.

We call this description a connection list, For example, *“he connection
1 2 3

list B describes the following
(",2) (3,1) (1,2)
3-counter.
|
P
i J Ql dJ Q J Q3
11, T 2 2 2 3 3 -
1 1 K2 s 3 ‘L_-Q3
& %
STA—— |




After a clock pulse, the outputs of each flip-flop change depending,
on the previous outputs and the inputs according to the following
rules,

Input (0,0) leaves tue output unchanged.

Inrut (1,1) changes output.

Input (0,1) produces a 0 output.

Input (1,0) produces a 1 output.
1 2 3

Thus if the 3-counter is e and the first
(2,2) (3,3) (T, 1)
’ output is (0,0,0), the sequence of outputs and consequent inputs is as
J follows:
>
8! 0 0 0 The triples are the outputs of this
0 0 1 3-counter in the order in which they
(0,0) (1,1) (1,0)
0 1 1 are generated. The pairs beneath an
(1,1) (1,1) (1,0)
1 0 1 output are tue next input sequences,
(0,0) (1,1) (0,1)
1 1 0 i.e., the next set of (Ji’Ki)’ i=1,2,3.
(1,1) (0,0) (0,1)
0 1 0
(1,1) (0,0) (1,0)
1 1 1
(1,1) (1,1) (0,1)
0 0 0

From now on when we speak of an n-counter we shall mean one with a
fixed connection list. 1In section 2 the number of n-counters is shown
to be [2n - 2]2n. Also in section 2 we associate a matrix M with an
n-counter. Given any output sequeice S, S determines the next input
sequence. Here we show that this input sequence is actually SM where
. is a vector determined by S. 1In addition we give an algorithm (2.4)

for determininsg which, if any, n-counter can produce a fixed sequence




of outputs. M is easily determined by the connection list of an n-
counter and vice versa.

In section 3 we give a simple algebraic transformation N which
operates on outputs and produces the next output from a given output.

N is easily determined by M and conversely. For the example above, the

a b c
(a+ b) (b + ¢) a

mod 2. Applying this transformation to 000 yields the same output

transformation N is All additions are
sequence as before. Each output is computed from the previnus one by
the above output rule. Previously, we determined this
sequence of outputs by using the inputs and the rules for
obtaining an output from a given input. Using N we can go

directly from one output to the next output.

O O MM OOO
Ok = = 0O~ O0O
O OO KM~

Simple rules for going from M to N and back again are given. Con-
ditions under which N can be cepresented by a matrix are given. The
complete form of a transformation N which correspond to the action o
an n-counter is determined. Algorithm 3.2, using the N transformation,
lecides which, if any, necounters produce a given sequence of outputs.

In section 4 we describe the directed graph of an n-counter. The
vertices cf this graph are the 2" possible outpuis with an edge going from
vertex Si to vertex Sj if Si exactly preceeds Sj' An n-counter is said
to be cyclic if its graph is the unior of disjoint cycles. In other
words, an n-cour.ter is cyclic if starting from any output, there is a
¢equence of outputs which returns to it. It is shown that an n-counter
is cyclic if and only if there is an i so that Ni = I where I is the

identity transformation. Special results for the case when N is a per-

mutation matrix are given, For any n-counter, if k is the l.c.m. of the
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cycle lengths then there is a geometrically determined non-negative \

integer j so that k is the smallest positive integer with the property

k+ j

that N = Nj. For a cyclic counter, j = O,

In section 5 we relate an n-counter to a group H. H is generated

by all permutations on the n objects a a (with simultaneous action

1000
on 31,.,.,§£) and tne permutations interchanging ai and Zi, i=1,...,n.
The order of H is (n!)2n. The subgroup of H leaving the N transforma-
tion of an n-counter C invariant is called the group G of C. Each
element in G is an i;omorphism of the graph of C. Two n-counters are

\ called equivalent if there is an{glement in H sending one onto the other.

Equivalent n-counters have isomorphic graphs and isomorphic groups.

The number of counters equivalent to C equals n! 2" divided by the order

)

)
A of G.

£

[ ) Since equivalent n-counters have the same properties, if one were
]

i?, to classify all n-counters for a fixed n it is sufficient to do this
}" by equivalence classes. This procedure is illustrated in section 6 for

all 2-counters. The sixteen 2-counters fall into & equivalence classes,

three of them cyclic. t




Section 2 The M-matrix

Suppose we have an n-counter C whose connection list is the ‘
. 1 2 DAL n !
following: b -— ———— . Here each ai or {
(al,al) (az,a'z) (an,an') ‘

' -—
a, is some j or j . Let M be the (2n) x (2n) matrix whose rows and ¢

columns are marked 1, 1', 2, 2', ...,n, n', and whose entries are zero
and the following ones.
1 in row a, and column i if a, = j

1 in row a, and column i' if ai' = j

1l in row ai' and column i 1if a, = E

1l in row a, and column A ai' = 7.

An M-matrix has exactly one one in any column. Further it has
zeros on all 2 x 2 diagonal blocks (since we do not allow the inputs of
a J-K counter to comc from its own outputs). There is clearly a gpe to
one correspondence between n-counters and 2n x 2n matrices M whose
entries are 0 and 1, which have exactly one one in each column, and
whose 2 x 2 diagonal blocks consist entirely of zeros. From this 1:1
correspondence we see that there are (2n - 2)2n n-counters,

As examples we list the M-matrices for the two connection lists
vhich appeared as examples in sections 1.
Example 2.1

1 2 3
(2,2) (3,1) (1,2)

ll

o W

2|

Orjooloo ™
COloolo =t

3'




Example 2.2 \

1 2 3 l
- 2,2) (3,3 (1,1)

1
1l
M= 2
2'
3
3l

O OO =jO © =
O OO MO O =
oo O N
[l [=Ne! {=Nel
O OJO O~ O W
O OJO OO0 — W

Any output S of a given n-counter C is an n-tuple of zeros and

ones. To this n-tuple associate a 2n-tuple of zeros and ones S by ;
replacing every zero by the pair 0,1 and every 1 by the pair 1,0. The ;
next theorem tells us how we obtain the next set of connection pairs
from S and M.
Theorem 2.3. Let C be a fixed n-counter and let M be its M-matrix.
If S is a; oatput of C, theu the next set of input pairs, called P, is
equal to S M.
Proof: The theorem follows by the definitions of the various elements
in it.
In section 1, the outputs and sets of connection pairs of b
example 2.2 were given. Each set of connection pairs can be found from
the immediately preceeding output by the theorem. For example, given
the output S = 001, we construct the next set of connection pairs as

follows. S = (0,1,0,1,1,0) so that

s M= (0,1,0,1,1,0) = (0,0,1,1,1,0) = (0,0) (1,1) (1,0C)
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One of the important consequences of this theorem is algorithm
2.4 which determines the n-counter C which could produce a fixed set

of outputs. Given a set of k outputs in a fixed order (i.e. k n-tuples

of 0's and 1's, Sl""’sk) then there are the following three possibilities.

,ee:,5 as a set of

1) Th=re is no n-counter which produces § K

1
outputs.

2) There is exactly one n-counter which produces Sl""’sk as

a set of outputs.
3) There is more than one n-counter which produces Sl""’sk as
a set of outputs.

Algorithm 2.4 distinguishes between these three cases and in
cases 2 and 3 give the specific n-counter or n-courters which produce
the given sequence.

Algorithm 2.4.

Given S k n-tuples of O's and 1's, this algorithm gives

oo wa iy >

a procedure for determining all n-counters (if any exist) which can

produce this sequence of outputs.

Let Si = 011,...an) and St+1 = (Bl,...,Bn) then there are exactly
2 input pairs which take any aj to Bj. If aj = Bj = 0 these are (0,0)
and (0,1). 1f aj = Bj = 1, these are (0,0) and (1,0). 1If aj =0

"

and Bj = 1, these are (1,1) and (1,0), while if @, = 1 ard B 0, these
|

j
are (1,1) and (0,1).

Let §1,...,§k be the k (2n)-tuples of 0's and 1's associated with
Sl""’sk' We start with a partially filled in M and compute §i M.

As we explain below this procedure dete:mines other entries in M. We

stcp when we have computed all M, i =1,...,k-1. We then know that

s,




=

)

either M cannot exist (so no n-counter could produce the sequence of
outputs), or exactly which matrices M could realize this sequence.

We start with placing 2 x 2 blocks of zeroes on the diagonal of M.
As we proceed we bear in mind that each column of M must have exactly
one one; the other entries are 0. So if we put a one in any column,
we can mak. the other entries 0. We know that §i M equals the set
of input pairs which send Si = (al,...,an) into Si e (Bl"'°’Bn)'
For each aj and Bj there are two possible input pairs which send uj
into Bj. These are given above. Notice that in each case these pairs
have a common component. Hence the procact §i M (given that Si < @ is
the next output) produces constraints on n of the 2n (olumns of M.
We fill in these columns to satisfy these constraints. If we cannot,
then M cannot exist. When we have finished computing §i M, Y =R st
k - 1, we have either determined

1) M cannot exist. This happens when the construction of M

based on outputs Sl,...,S cannot possibly send S, into S

i i i+ 1
2) A specific M has been constructed (all blanks have bheen

filled in and M sends each Si into a set of input pairs which pro-

duces Si % 1).

3) More than one M is possible. This happens when no contradiction
occurs but when then are still a number of blanks in M. These can

then be filled in in any way providing each column of M has exactly

one 1. Each of these ways corresponds to a different n-counter.

Another 2igorithw (3.2) based on the N-transformation is given in

sectiom 3. Both algorithws accomplish the same task.




Example 2.5: We give an example of the use of algorithm (2.4).
Assume we have the following sequence of outputs.

000, o011, 110, 100, 111, 001,  000. |

S1 82 S3 S4 85 S6 S7 \

The first partial M is

00 ' !
00

o O
o O

00
00

|
l

= (0,1,0,1,0,1). 1In computing §1 M we write below M the 3 sets

A Tt

2)

of 2 possible input pairs. We use this to add entries to M.

@; 1, 0, &, O 1) jaoje: ¢ @
00
000
0 00
00
00
U118 Possible input pairs to send 0, into
1
10110 0
R 3

The checked columns are the ones where the connection pairs have a common
entry. We are able to make entries into these columms, and these entries
are shown. We continue in this fashion.

s,M=(0,1,1,0,1,0) (000 (00

00 0
00)0
0 00

00

11
10§10

possible input pairs.

0

00

0 00
3Lt |

01

v




0
00
00

_9.0_ possible input pairs
01

o

(1,0,0,1,0:1)

ofo ~jo olo osjo|lo
—Jlo o~ olo o 4

=10 O 0o

possible input pairs

1,9,1,0,1,0)

[= B
o JO ©
o
(=]

o
=~ 1010 O+ OJO O

o

OOD—‘OOOO‘D—‘D—‘OD—‘O

-

possible input pairs

o

(0,1,0,1,1,90)

O JO O]JO =]JO O

possible input pairs

O~ JO O~ O]JO o©
HHOOOOD—‘O\OOOOOOD—‘O

jo
—

\




Hence M is unique and is 00101100 |
00{00 [01 ‘
10[o00fco !
00joO0]10 !
01]00]00 3
00]J]10100

From M we read off its 3 counter.| 1 2 | 3 !

(2,3) (3,1)|(?,I}

Note that if we had asked for a 3-counter which has S1 through S6 as

successive outputs (with no requirements about the successor of 86) then {

we would not only have the M above but also

M, = o he gl e so that there would be 2 possible 3-counters,
0O 0joO0 O0jO0 1 '
o olo olo o the one above and the following one corresponding I
o olo of1 o to M, : - 2 wi L !
1 1{o0 ofjo o |(3’3) l (3,1) ] 2,1) l
0 01 0j0 O

This 3-counter takes S1 to 82,

and S6 to 100.
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Section 3. The Transformation N

In this section we show that giver any n-counter C there is a

transformation N which takes any output S, and produces the next

i

output S, In other words if S, = (¢,,..., ), then S =
i i 1 n

+ 1. i+1

(Bl,...,Bn) where each Bi can be expressed as a certain set cf sums
and products (mod 2) of specified 's. The rule for obtainriag S, + 1
from Si is the N transformation. It is surprising that given an
n-counter such an N-transiyormation exists., We will demonstrate how
to obtain N from M and conversely. This is quite easy. The complete
form of any such N will be given. N is nct always a linear transfor-
mation as M is but it sometimes is linear. 1t is fairly obvious from
properties of M whether or not N will be linear.

In order to determine N we assume we have an n-counter C and an
output Si = (al,...,an) where each a&is 0 or 1. With each a, is

i

I ' -
associated an input pair (ai,ai Ve 1 et Si by (Bl,...,Bn). Then

the ith component of the next output, B, , is determined bv &, and the

it i
pair (ai’a'i) as follows .

Identity 3.1 Bi = (ai a '+ (1+ ai) a, + ai) (mod 2)

i
Identity 3.1 can be verified computationally for each specific

possiblity. This identity reflects the fact that the rules governing

outputs in a J-K flip flop act like an affine transformation followed

by a dot product.




Using identity 3.1 we can determine ihe form of Bi for the three \

different types of connection pairs (ai,ai'). |

Case I. a) (a;,a;") = (3,3) b) (a;,a;") = (G, "
In case a), Bi = (aij + (1+ ai)j + ai) (mod 2) \
= (@ + j) (mod 2)
f
Similarly, in case b) Bi = (ai + 3).
_ _ {
Case 1I. a) (ai: ai') = (j,j) b) (ai,ai') = (j,j) |
In case a), B, = (a; 5% (1% a)i + a;) (mod 2)
=@ A+ D+ A+a) f+a) (med?2) |
= |
Similarly, in case b) Bi = ]
Case III.  a) (a;,a.') = (3,k), b) (ag,a," = (3,k),
) (a;,a,") = (3,k) d) (a;,a;") = (3,k)
For case a) Bi = (ai k+ (1 + ai) j+ ai) (mod 2)
= ai G+k)+ 3+ ai (mod 2)
Similarly, in case c) Bi = ai(j + E) + j+ a, = ai(j + k) + j I
In case d) Bi = ai(3'+ ﬁ) + 3'+ a = ai(j + k) + oy + i+ 1

1f Si = (al,...,an) and the next output Si+1 = (Bl,...,an then Bi is
always obtained from o by a transformation of the form given in Case I
or Case II or Case III. We call N which consists of these n transforma-
tions c€ a into Bi’ the transformation of the n-counter ¢. If all

the n transformations in N fall uncer cases I or II, then N is a linear

transformation and its matrix can be obtained from the matrix of M by

putting 1's on the diagonal, for any column pairs i, i', whenever case I




occurs. If all the n transformations in N fall under case II, we

call N a permutation and the matrix of N is M. If in addition, N

sends distinct a; into distinct j (or their complements), then we call

N a strict permutation. The matrix of a strict permutation has exactly
one non-zero element in any row or column and so represents a permuta-
tion on 2n objects. Of the (Zn-Z)Zn n-counters [A(n-l)]n are linear

and [Z(n-l)]n of the linear ones are permutations. It is clear that in
all three cases the transformation N can be easily obtained from the
connection list or the matirix M and conversely. We will illustrate this

by examples.

Example 2.1
1 2 3 has its N transformation
(2,2) (3,1) (T,Z) as follows.
a b c This is non-linear since the
atb b(cta)tctb c(a+b)+; b and ¢ images are non-linear.

To obtain any output from a given one, we merely apply these rules

modulo 2, for example if, S1 = 000, S, = 001 where the first O is

2
0+ O(a+ b), the second 0 is 0(0 + 0) + O (b(c + &) + ¢ + b), and the -~
1 1s 0(0+ 0) + 1 (c(a+ b) + a). Clearly Sy =011 ete.
Example 2.2
1 2 3
(2,2) (3,3) (1,1)

Its N transformation is

a b c and is clearly linear although

o]

a+ b b+ c not a permutation since the
transformations on a and b

are not permutations.
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,
(0 oy0 o]0 ) 1 0j0 0J0 1)
o ojo o1 o o 1o of1 o
M = 1 1{0 ofo o and N = 1 1)1 ofo
o ofo 0 o ofo 1]o o
1 1{0 0 0 0 0
o olo ofjo o o ofo olo o
. J \ J

To obtain the succeediug output from a given output S, one can apply the rule
given by N or else compute S N. For instance, if S1 =0 0 0, then §1 =
(0, 1, 0, 1, 0, 1) and

s, N= (0,1,0,1,0, 1)r 1 0j0 0}]0 11 = (0, 1, 0, 1, 1, 0) which

1
0 1{0 O0]J]1 O means 32 =001.
1 0
0 010 1

o o1 1{0 o
Loooooo)

We now give algorithm 3.2 based on the N transformation. As the
previous algorithm based on the M'matrix does, this algorithm determines
the possible, if any, n-counters which can generate a given sequence
of outputs.

Algorithm 3.2

Suppose we have a sequence of k outputs S ee,5, which we presume

1 k
to be generated by an n-counter. Then knowing the for. that N can take,
we can solve n(k - 1) equations for the unknown parameters. 1In other
werds, if Si = (al,..., an) and Si+1 = (bl""’bn) then bj is a linear
combination, with coefficients O and 1 of l,al,...,an and possibly a
term in a times the sum of a pair from the set {al,...,aj_l,aj+1,...,an}.
/ n-1\

Hence there are (n + 1) + \ n21/ coefficients to determine and




n(k - 1) equations. In addition, these coefficients must satisfy cer-

tain constraints, namely, there is exactly one non-zero coefficient

of an a (for k # j; axd at most one non-zero coefficient of a  times

3
a + ;l (k, J# 3).

We illustrate th.s method by the sequence of outputs 000, 011, 100,
111, 001, 000 (this is the same oxample we used for algorithm 2.4). The
general form for a 3-ccunter is given below. At the left side we list
the outputs. On

the same line with an output is the 3 equations it

determines.

(13*(14

1, BZ+BA=1’ and Y2+ Y3=1-

The constrainte mentioned above imply the three equations.

S ala(bi-c)+aza+a3b+aac+a5 Blb(a-!-c)+f32al-B_.sb-!—ch-i-f}5 ch(a+b)+Y2a+Y3b+Yac+
Y5
0 1 1 0= = =
a5 1 BS 1 Y5
110 1= a3+ Q, known 1l = BI+B3+BI&+1 0 = Y1+Y3+Y4+1
- + = = 4
100 1 ozl+a2 Ot3 0 1+BZ+B."+1 0 Y2+Y3+1,
known
D | l= a, l= BZ+1; BZ=0 1=Y2+1; Y2 =0
Hence B3 = 0, Hence Y3 =1
B, = 1,
By =1
Hence this trans-
formation is deter-
mined as
b
b(atc)Hctl
001 0=1+a,+qa 0= 1(1+1)+1+1 1=1+Y,+1:Y, =1
3 4 4 4
checks and Y =1
known 1




formation is
determined as

C

Hence this trans-

c(atb)+bt+ c+l

000 0 =aq, 0= 0(0+1)+1+1 0 = 1(0+0)+0+1+1
3

checks checks

Hence qx3 =, = 1 and

1
this transforma. on is

a

a(b+ c)+a+b

As does algorithm (2.4), algorithm (3.2) determines that a) no counter
can generate the sequence of outputs, b) exactly one counter can and
c) more than one counter can. 1In case c¢), some indeterminates will not
be determined. They can be specified in any way consistent with the

constraints (i.e. in looking for the rule taking a, to its successor,

3

there is exactly one non-zero coefficient of an a (k # j) and at most

one non-zero coefficient of aj times a + 7 (k, £ #3).
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Section 4 |
The Graph of an n-Counter

If C is an n-counter then the action of C on an output is given “
by an N transformation of a certain form. Given such an N, we define /
the transformation Ni in the usual way, i.e., Ni is defined inductively ﬁ
on any sequence S of zeroes and ones by Ni(S) =N (Ni-l(s)). If N is
of the form which gives rise to an n-counter, it does not follow that
Ni is of that form, it may be or it may not be. However, Ni must be
of the following general form. If S = (al,...,an) (all ai's are 0 or 1)
and Ni(S) =8' = (bl,...,bn) (again all bi are 0 or 1), then the trans-

formation taking a; to bi is of the following form: b, is a linear com-

i

bination of the (2n - 1) products of LR and B can be 0 or 1. One

transformation of this form is the identity transformation, denoted by
I, where I(S) =S for any S. I does not give rise to an n-counter,
however the existence of an i such that Ni = 1 gives important infor-

mation about an n-counter as we see below.

Let C be an n-counter. We associate with C a directed graph R
whose vertices are the 2" n-tuples of 0's and 1's. We draw an arrow A
fr '
om a vertex Si to another Si+1 if Si+1 is the output directly

succeeding Si' We say that the counter C has an s~cycle if R has a

cycle of length 3, We illustrate this by the examples below.

B e MR e L Ay A.u_:‘.;_A_ i
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Example 4.1 .
g s
6 010 0]1 O
o 2]lo o}o 1 '
M=|"1T 10 0f0 © {
o olo oo o '
0 o]l 1]0 © %
o olo olo o
- v

C has a 7-cycle and a l-cycle

N sends (0,0,0) onto itself, and we call it a l-cycle.

Example 4.2

§ .
o olo olo o | | ;
o olo olo o N is a b lc N =1

M=|1 10 0|1 0 (a+bi(b+c) b

o olo ofjo 1
0 0j1 110 O© 68,1058 (0,1,0) (1,1 ,0) _
o olo oflo o

' 4

(1,0,0) (0,0,1) (1,1,1) (1,0,1) (0,1,1)

C has 2 3-cycles and 2 1l-cycles

Example 4.3

ﬁ

r 0 olo 0j0 O N is & l . I € N6 =1

o 0jo ojo o atb 4 b
¢ )|(b+c C has a 6-cycle
M=}1 1j0 010 1
and a 2-cycle.

0 0jJO 01 O

(1’1’0) (1,1,1 (0’0,0)
0 0J1 110 O

: [0 ofo ofo o ; 1,0,1) (0,0,1)
- (0,1,0) (1 (0,1,1)




Q(al,...,an) be the set of all distinct (2n - 1) products of a
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Example 4.4
[ a ! b c 4
0000117 N is ‘_N=N
|
0 0{0 00 O (a+b)|(b1—c)l (atc)
" 1 1{o ofo o
B (1,0,0)
0 0f0 00 O (1.0,1
@ oy 10 © (1,1,1) (0,1,0)
A (0,0,1)
(0,0,0) (1,1,0) (0,1,1)

C has a 3-cycle and a 2-cycle.

An n counter is called cyclic if given any sequence S, there is a

set of succeeding outputs S,Sl,...,S = S returning to S. In terms of

k

the graph of C, an n counter is cyclic if and only if its graph is the

union of disjoint cycles. Theorem 4.6 demonstrates the very interesting

fact that an n-counter is cyclic iff there exists an i such that Ni = 7.

In order to prove this theorem we need Lemma &4.5.
First some notation.

Let Alyeesd be n variables which assume the values 0 or 1. Let

EERETLN

and the number 1. We define a form on (a ..,an) to be a linear com-

1’°
bination of elements of Q(al,...,an) with coefficients 0 or 1.

If L is a form on (al,...,an) and S is an n-tuple of O's and 1's, then L(S)
is the value (either 0 or 1) which L assumes (mod 2) when the ith ccm~

ponent of S is substituted for a, for all i between 1 and n. An :xample

of a form on (al,az) is a,a, + a, + L., “LE S & (OLR), L) = 0.1+ 1+ 1=
0 (mod 2).

——
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Lemma 4.5

.o d S) = L,(S
If L, and L, are two forms on (a,, ,a ) an L1 (8) 2 (8)

for any n-typle S of 0O's and 1's, then L, is identically equal to L,.

1

Proof: The proof is by induction on n. If n=1, L1 = Bl a, + Bz

where B, B, ¢ {0,1}. Also Ly = ¥13,%Y, for v, ,v, € {G,1} . 1£8.=0,
Ll(S) = Bz = LZ(S) =Y, If S =1, Ll(S) = Bl + Bz = LZ(S) =¥y + v,
and since BZ = Yy, Bl = Yl'
Assume the lemma is true for n-1l. We want to prove it true »0r n.

L1 and L2 are two forms on (al,...,an) and Ll(S) = LZ(S) for any

n-tuple S of 0O's and 1's by assumption. Now Ll can be expressed as

some K, + K a wi2re K. and K, are forms on (a Also L

ikl 1 2 e e g D 2
= M1 + M2an where M1 and M2 are forms on (al""’an-l)' Let S be an
arbitrary n-tuple whose nth component is O and let S' be the (1-1) tuple
which agrees with S on its first (n-1) components. Then Ll(S) = KI(S')
and L, (8) = MI(S'). But S' is an arvitrary (n-1)-tuple and Ll(S) = L, (5)
implies KI(S') = M:(S') so that by the induction assumption Rl is
identically equal to M; :Now let S be an arbitrary n-tuple whose nth
component is 1 and let S' the (n-1)~tuple which agrees with S on its

first (n-1) components. By reasoning similar to the previous situation,

K, + K, is identically equal to M

1 9 + M_ so that K2=M2 from which it

1 2

follows that L1 = LZ.Q.E.D.




, i .
Theorem 4.6. An n-counter C is cyclic iff N'=I for some i.

Proof: 1If Ni=I for some i, then C is clearly cyclic.
Assume C is cyclic. Then for S zny sequence of 0's and
1's, there is a j so that Nj(S)=S by the definition of |
cyclic. Let i be the l.c.m. of these j's. Then Ni(S)=S '
for all S. Now Ni is a form on (81""’an) and I is a form \
on (al,...,an). Since Ni(S)=I(S) for any n-tnple S, then Ni
is identically equal to I.

Theorem 4.7.. If an n-counter C is cyclic, then Ni=I for a

smallest positive integer i. Further i = l.c.m. of the cycle

lengths of C. Hence the length of each cycle divides i.

Proof: Let j be the l.c.m. of the cycle lengths of C. Then

Nj(S)=S for any output S since any S is in a cycle. Hence,

Nj=I so that jzi. If j>i, let ni be the largest multiple

of i less than j. Then j-ni<i so that N3 Pi(s) = y3 Pii(g)) =
Nj(S) = S for all S. This contradicts the fact that i is

the smallest positive integer such that Ni=I.

Corollary 4.8. If C is a cyclic counter and NP=I for p

a prime, then C has at least one p-cycle and all the cycles ~
of C are of length p or length 1.

Corollary 4.9. If C is a counter whose N transformation is

a strict permutation, then C is cyclic. Further, the length

of any cycle of C divides (2n)!

Proof: 1In this situation N is a permutation on 2n objects,

hence an element of Szn. So its ordér i must divide the

order of S which is (2n)! But this i is the smallest

2n
positive integer such that nt=1.




Corollary 4.10. If C is cyclic, them 2" = kg + k ¢y + \

k., c, +..+ kr c_ where ki equals the number of cycles |

2 72 r

of length c, and k0 is the number of cycles of length one.
Note: If N is a permutation transformation, then Ni=I iff
the matrix of N to the iEh power is the identity matrix.
If N is a linear transformation this has to be modified

as follows.

We assvme N is a linear transformation. Then the columns
of the matrix of N are in pairs and the transformation N

can be read from its matrix. For example, aa bb_¢cc gives
10 00 01

01 00 10
11 10 00
00 01 00
00 11 00
00 00 00

a+atb, a+>a+b, b>btc, b~ btc, c*a, c *a. Call two
matrices equivalent if they define the same transformation.

Another matrix equivalent to the one above is aa ob cc
10 00 11

01 00 00
01 10 10
10 01 10
10 11 00
10 00U 00

since this yields the transformation a+a+b+c+c = a+b since
c+c=1,a+a+b, b+b+c, b+b+c, c~ a+b+b = a, c + a.
Then Ni=I if and only if there is some matrix in the equiva-
lence class of Ni which is the identiy matrix.

Theorem 4.10. Let C be an n-counter whose transformation

is N. Let j = max (minimum distance to cycle).
all n-tuplesS$S

If k is the l.c.m. of the cycles of C, then k + j is the

smallest positive integer such that Nk+3=N3. k.




Proof: All the vertices of R which are in cycles =
{Nj(S) for any n-tuple S}. Hence N (NJ(S)) - NJ(S)

so that Nk+J(S‘ = NJ(S) and by lemma 4.5, Nk J = NJ.

The proof of the fact that k+j is the smallest positive
integer for which this is so is as in Theorem 4.7. (Note
that when j=0, we have the special case Ni=I discussed in
Theorem 4.7).

Corollary 4.11. 1If k in the previous theorem is a prime

P, then C has a cycle of length p and all cycles are either

of length p or length 1.

——— e




Section 5. The Group of a Counter
We consider the symmetric group on n letters Sn
to act on the 2n letters al,...,an,al,...,an by having
any permutation 7 in sn act on Ayrecesd and simultan-
eously in the same fashion on 51,...,5n. We let H be
the group of permutatioms on the 2n letters aysecerdny

ayresesa generated by the above represzntation of

s, and the transposition (al,El). H also contains the

transpositions (a2,a2), (a3,a3),...,(an,an).

Theorem 5.1 The order of H is n! 2".

Proof: Consider the homomorphism of H onto Sn gotten

by identifying a; and Ei for all i, 1¢ i < n. That

this mapping is a well-defined homomorphism onto Sn
follows from the definition of H. The kernel of this
homomorphism is the subgroup of order 2" generated by

the n transpositions (ai,Ei), 1< i < n. Hence the order
of H = the order of Sn times 2" = n! 27,

Consider an n-counter C and its defining transfor-
mations N. N consists of n transformationstvi(al,...,an),
i=1l,...,n where a; goes into wi(al,...,an) andcpi is either
a permutation, linear transformation or a non-linear
transformation of the form given in section 3. We con-
sider a permutation 7 in H to send N into another N
transformation by sending a; into n(ai) andcpi(al,...,an)

into<Pi (ﬂ(al),---,"(an))-

Theorem 5.2 If m is in H and N is the transformation of an n-

counter C, then 7w (N) is also the transformation of an n-counter.
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Proof: This follows from the fact that m(a;) = w(Ei). i
Clearly m preserves permutations, linear transformations ‘
and the special form of non-linear transformations which '
the N transformations of a counter can assume. ﬁ
Definition: If C is an n-counter and N is its trans- \

formation, then the subgroup G of H which sends N onto

itself is called the group of N. {

Definition: Two n-counters C1 and C2 with transformations

N. and N, are called equivalent if N2 = n(Nl) for some 7

4 2

in H.

Theorem 5.3. If an n-counter C has group G, then the num-

ber of counters equ:valent to C is 2"xn1
order of G.

Proof: This is so since every coset of G in H corresponds
to a distinct counter equivalent to C and conversely.
We illustrate these ideas with examples.

Examy.le 4.1

N a b c N =1
(a+b) (b+c) a C.L. 1 2 3 b

(2,2)  (3,3) (1,1

(0,1,1)

1,10
(0,0,0) (0,1,0)




If 7 = (a, a) then w(N) = N, is as follows.

1
N, _a b o [applying T to a we have
a+b b+c a _
a so that a |
3+b a+b
7 _
Nl =1
Rl:
(1,1,1) ., (0,0,0)

(0,1,0 g ﬁ(o,o,l)
(1,0,0) ilflfﬂﬂ;~h‘h__ﬁ‘hﬁ" (0,1,1)
f1,0,1)

Note that Rl can be obtained from R by complementing the

coordinate of each triple (this is the permutation (a,a)) .

C. L. 1 2 3
2,20 (3,3 (1,1

The only permutation in H sending N onto itself is
the identity. Hence there are 23.3!= 48 counters equiva-
lent to N.

Example 4.2

€. B 1 2 3
(2,2) (3,3) (2,2)
N is a b c N3 = T
at+b b+c b
R:
.(0,0,0) (0,1,0) (1,1,0)

.(1,0,0) (0,0,1) (1,1,1) (1,0,1) (0,1,1)

o o e et




Here G is the group of order 2 consisting of the transposi-
tion (a, a) and the identity. Hence there are 24 counters
equivalent to N. Notice that complementing the first com-
ponent yields an isomorphism of R.

The permutation (a, b, c¢) produces the following counter

Ny equivalent to N.

Ny a b c CLx 4 2 3
c b+c a+c (307 (3,3) (1,1)
Ry
. (0,0,0) (0,0,1) (0,1,1)
.(0,1,0) (1,0,0) (1,1,1) (1,1,0) (1,0,1)

The points of R, could be calculated .irectly or by

1
cyclically permuting the coordinates of R.

Example 4.3 is sent into itself by (a, a) so that its
group has order 2. Hence there are 24 counters equivalent
to it. The group of example 4.4 is exactly I so that *here
are 48 counters equivalent to it.

Theorem 5.4 Equivalent counters have isomorphic graphs and
isomorphic groups. Also if Nl and N2 are equivalent, then
=N ife nl o= ).

Proof: 1If N1 and N2 are equivalent counters and T is the

element of H such that W(Nl) = NZ’ then 7 is the isomorphism

which sends the graph of N, onto the graph of N,. If G is

the group of N2 then ﬂ-l G IT is the group of N, so they are

1
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isomorphic.
Theorem 5.5 If C is an n-counter, and G is its group,
then each permutation in G is an isomorphism of the graph
of C.
Note that there can be isomorpbisms of the graph which
do not arise from permutations in H.

Since equivalent counters have isomorphic graphs, if
one were to search through all n-counters, for a fixed n,
to find which cycle lengths are possible, it is enough to
examine only one n-counter in each equivalence class. To
show how this might be done, we completely classify all 2-

counters in section 6.

o
!
|

h
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counters are linear.

2)

order 8. H is non-abelian.
00 11 N: a
00 00 a+b
11 00
00 00
(1,00  (0,1) N =N
V4
(1,1)
(050) CLi»
(2,2)
00 10 N: a b
M= }00 01 atb a
11 00 3
00 O N~ =1
(0,1
(1,1)
*(0,0) (1,0)
3)
00 10 N: a b
M= (00 01 b a
10 00
01 00 W2=1
R: .(0,0) A.1,0) C.
.(1,1) (0,1)
00 01 N: a b
M= J00 10 b a
10 00 4
01 00 N =1
C.L. 1l
(2,2)

Section 6.
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The Classification of all 2-counters

There are 16 different 2-counters. All N for 2-

H here is the dihedral group of

G has order 2 and c~’ains

a+b (a,b). ilence there are 4

counters in this equivalence
class.

G = I. Hence there are 8 of

c.L. _1  _2
2,2) @D

G 1s a group of order 4
generated by ﬂr:pmmutatum
(a,b) and (a,a) (b,b). Hence
there are 2 of these

1 2
(2,2) (3 5.1)

G is a group of order 4 generated
by the permutation (a, b, 3, b).
Hence there are 2 of these.




R: (O.O}IDI,O)
|
(0,1 (1,1)
These 4 cases add up to 16 counters. Hence these are
all. Counters 3)and4) have permutation N's so that for these

cases the matrix of N equals the matrix of M. Aall counters

in classes 2. 3, and 4 are cyclic.

A J-K flip-flop is a particular type of 2-input, 2-out-
put finite-state automation. For more on this see [1] and

[31.
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